
Dynamical Systems (ME221)

Week 04: Linearization and State Models

Mahmut Selman Sakar

Institute of Mechanical Engineering, EPFL

1



Lecture Overview

• State-space Approach to Modeling Dynamical Systems

• Linearization of Non-linear Systems
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State-space Approach to Modeling Dynamical Systems
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General Form

State(s)

Input(s) Output(s)



State-space Approach to Modeling Dynamical Systems
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Linear and Time-Invariant System

States

State(s)

Input(s) Output(s)



Solution of the State Equation
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• Homogenous State Equation

Exponentials of Matrices



Solution of the State Equation
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• Non-Homogenous State Equation



Another perspective
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State Variables

• From an nth order differential equation to n 1st order differential equations



Another perspective
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Utility of State-space Representation
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• COMPUTATION
• Capability of high-speed solution of differential equations
• The format of state-space representation is specifically developed for 

computer algorithms and simulation framework



Utility of State-space Representation
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• Stability: eigenvalues of the A matrix

• Controllability: the ability of an external input (the vector of control 
variables) to move the internal state of a system from any initial state to any 
other final state in a finite time interval
• The rank of the controllability matrix (A and B matrices)

• Observability: one can determine the behavior of the entire system from 
the system's outputs
• The rank of the observability matrix (A and C matrices)



Definitions

11

• The state of a dynamical system is the smallest set of variables such that 
knowledge of these variables at t = t0, together with the knowledge of the 
input for t ≥ t0 completely determines the behavior for any time t ≥ t0.

• The state of an LTI dynamical system at time t is independent of the state 
and input before t0 (initially at rest).

• Variables that do not represent physical quantities can be chosen as state 
variables

• How do we know the minimum number of states?
• The minimum number required states equals to the order of the 

differential equations describing the system



Example 1 (Non-linear System)
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State Variables State Equations



Example 2
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Example 3: Spring Pendulum
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• A pendulum made of a spring with a mass m on the end
• The equilibrium length of the spring is 𝑙
• Assume that the motion takes place in a vertical plane
• Find equations of motion for generalized coordinates 𝑥 and 𝜃

𝑇 =
1
2𝑚 𝑥̇! + 𝑙 + 𝑥 !𝜃̇!

𝑉 = −𝑚𝑔 𝑙 + 𝑥 cos 𝜃 +
1
2
𝑘𝑥!

𝐿 = 𝑇 − 𝑉 = "
!
𝑚 𝑥̇! + 𝑙 + 𝑥 !𝜃̇! +𝑚𝑔 𝑙 + 𝑥 cos 𝜃 − "

!
𝑘𝑥!



Example 3: Spring Pendulum
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𝐿 = 𝑇 − 𝑉 = "
!
𝑚 𝑥̇! + 𝑙 + 𝑥 !𝜃̇! +𝑚𝑔 𝑙 + 𝑥 cos 𝜃 − "

!
𝑘𝑥!

• Note that there are two generalized coordinates, 𝑥 and 𝜃.

𝑑
𝑑𝑡

𝜕𝐿
𝜕𝑥̇

=
𝜕𝐿
𝜕𝑥

𝑑
𝑑𝑡

𝜕𝐿
𝜕𝜃̇

=
𝜕𝐿
𝜕𝜃

𝑚𝑥̈ = 𝑚 𝑙 + 𝑥 𝜃̇! +𝑚𝑔 cos 𝜃 − 𝑘𝑥 (1)

𝑑
𝑑𝑡

𝑚 𝑙 + 𝑥 !𝜃̇ = −𝑚𝑔 𝑙 + 𝑥 sin 𝜃

𝑚 𝑙 + 𝑥 𝜃̈ + 2𝑚𝑥̇𝜃̇ = −𝑚𝑔 sin 𝜃 (2)

𝑚 𝑙 + 𝑥 !𝜃̈ + 2𝑚 𝑙 + 𝑥 𝑥̇𝜃̇ = −𝑚𝑔 𝑙 + 𝑥 sin 𝜃



Example 4
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• Inputs: voltages u1 and u2

• x1 : current flowing through inductor
• x2 : voltage on the capacitor

(1) (2)



State-space modeling with input derivatives

17

𝑦̈ + 𝑎"𝑦̇ + 𝑎!𝑦 = 𝑏#𝑢̈ + 𝑏"𝑢̇ + 𝑏!𝑢

𝑥! = 𝑦 − 𝛽"𝑢

𝑥# = 𝑥̇! − 𝛽!𝑢

𝑦 = 𝑥! + 𝛽"𝑢

𝛽" = 𝑏"

𝛽! = 𝑏! − 𝑎! 𝛽"

𝑥̇# = −𝑎#𝑥! − 𝑎!𝑥# + 𝛽#𝑢
𝛽# = 𝑏# − 𝑎! 𝛽! − 𝑎# 𝛽"𝑥̇! = 𝑥# + 𝛽!𝑢

Define:

where

where

𝑦 = 𝑥! + 𝛽"𝑢



Example 5
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• Input: displacement x2
• Output: displacement x1

𝑦̈ +
𝑓"
𝑚 𝑦̇ +

𝑘"
𝑚 𝑦 = −

𝑓!
𝑚 𝑢̇



Linearization of Nonlinear Systems
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• Linear Approximation
• Approximation of individual nonlinear terms

• Jacobian Linearization



Tangent Line Approximation and Taylor’s Theorem
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• For small deviations      around a fixed point 

Taylor Series

Approximation
tangent line

original



Small Angle Approximation
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• Approximate the values of main trigonometric functions
• The angle is small and measured in radians

𝑠𝑖𝑛𝜃 ≈ 𝜃

𝑐𝑜𝑠𝜃 ≈ 1

𝑡𝑎𝑛𝜃 ≈ 𝜃

𝑠𝑖𝑛!𝜃 ≈ 0

𝑠𝑖𝑛𝜃 =
𝑂
𝐻 ≈

𝑂
𝐴 ≈

𝑠
𝐴 =

𝐴𝜃
𝐴 = 𝜃



Small Angle Approximation
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• Approximate the values of main trigonometric functions
• The angle is small and measured in radians

𝑠𝑖𝑛𝜃 ≈ 𝜃

𝑐𝑜𝑠𝜃 ≈ 1

𝑡𝑎𝑛𝜃 ≈ 𝜃

𝑠𝑖𝑛!𝜃 ≈ 0

𝑠𝑖𝑛𝜃 = J
$%#

&
−1 $

2𝑛 + 1 ! 𝜃
!$'" = 𝜃 −

𝜃(

6 +
𝜃)

120

Taylor series expansion about 0



Small Angle Approximation
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• Approximate the values of main trigonometric functions
• The angle is small and measured in radians



Equilibrium Point
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• At the equilibrium point                 , the 
derivatives will go to zero.

Taylor Series Approximation



Approximation in Matrix Form
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• Introduce variables for small variations: 

• Note that

Linearized Version of State Model



Jacobian Linearization

26



Example 1
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• Equilibrium Point

Linearize the system around the constant input at

• Jacobian Linearization



Example 1
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Linearized Version of State Model



Example 2
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sin 𝜃 = 𝜃 −
𝜃$

6
+
𝜃%

120
+⋯ sin 𝜃 ≈ 𝜃

• Small angle approximation (Taylor Series for x1=0)

sin 𝜃 = sin 0 + cos 0 ( 𝜃 − 0) − ⋯

• Equilibrium Point



Example 2
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• Equilibrium Point

• Jacobian Linearization



Example 3
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• Equilibrium Point

• Small angle approximation

u = F

sin 𝜃 ≈ 𝜃 cos 𝜃 ≈ 1



Example 4
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𝐽𝜃̈ =
𝐾*
𝑅*

𝐾+𝑢 − 𝐾*𝜃̇

𝑆
𝑑ℎ
𝑑𝑡 = 𝛼𝜃 − 𝑘 ℎ

𝑞,-. = 𝑘 ℎ

𝑞/$ = 𝛼𝜃

ℎ ≅ Uℎ +
1

2 Uℎ
𝛿ℎLinearization:



Example 5: Spring Pendulum

33

𝑥̇" = 𝑥!

𝑥̇! = 𝑙 + 𝑥" 𝑥0! + 𝑔 cos 𝑥( −
𝑘
𝑚𝑥"

𝑥̇0 = −
2𝑥!𝑥0
𝑙 + 𝑥"

−
𝑔 sin 𝑥(
𝑙 + 𝑥"

𝑥̇( = 𝑥0


