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| ecture Overview

* State-space Approach to Modeling Dynamical Systems
* Linearization of Non-linear Systems




State-space Approach to Modeling Dynamical Systems

Input(s] Output(s])

u(t) y(?)
| > State(s] : x(7) >

General Form

X(1) = flx@), (1), 1]

W) = glx(®), u(), t]

x(ty) = xg




State-space Approach to Modeling Dynamical Systems

Input(s] Output(s])

u(t) y(?) >

| > State(s] : x(7)

Linear and Time-Invariant System

%(t) = Ax(t) + Bu(r) e |10

y(t) = Cx(t) + Du(r) x(t) = xz.(l)

x(0) = x, X, (1)




Solution of the State Equation

* Homogenous State Equation

. X = m-vector
x = AX A = n X nconstant matrix

=
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Exponentials of Matrices
d L
dt

— AeA! pAT+s) — LAl As

e(ATBI — oAl Bl if AB = BA




Solution of the State Equation

* Non-Homogenous State Equation = n-vector

= r-vector
= n X n constant matrix
B = n X r constant matrix

x = Ax + Bu

P o=

e Mx(r) — Ax(1)] = %[e‘“x(t)} = ¢ A'Bu(r)

e Mx(r) — x(0) = /OeATBu(T) dr

[
x(t) = eMx(0) + /eA(tT)Bll(T)dT
0




Another perspective

* From an n* order differential equation to n 15t order differential equations

YO +a, v + ..+ agy(®) = bu(r)

State Variables
x(t) = y(1)

() =y )

Xn— l(t) = y(n —2)(t)

X0 =y V)

y0).i= 0,1, ...n—1
X,(1) = x5(1)
XH(1) = x5(1)

X, _ 1(1) = Xn(t)

x,(t) =—a, x,()—a, ,x, () —...—ayx(t)+ bu(r)




Another perspective

_ xl(l‘)— 0 1 ... 0 o I (1) . _O_
x2(t) 0 0o ... 0 0 Xz(t) 0
AN + |1 )
.X.fn—l(t) 0 0 ... 0 1 'xn—l(t) 0
5D | [T% T4y e Ty T ]| X, _b_
i Xl(t) |
xz(t)
W) = [1 0 ... 0 ()] :
xn—l(t)
x, (1) x1(0), x(0), ..., x,(0)




Utility of State-space Representation

xX(t) = Ax(t) + Bu(t)
x(0) = x,

y(t) = Cx(t) + Du(t)

« COMPUTATION
» (Capability of high-speed solution of differential equations
* The format of state-space representation is specifically developed for
computer algorithms and simulation framework




Utility of State-space Representation

x(t) = Ax(t) + Bu(t)
x(0) = x,

y(t) = Cx(t) + Du(t)

» Stability: eigenvalues of the A matrix

* Controllability: the ability of an external input [the vector of control
variables]) to move the internal state of a system from any initial state to any
other final state in a finite time interval

* The rank of the controllability matrix (A and B matrices]

* Observability: one can determine the behavior of the entire system from
the system's outputs
* The rank of the observability matrix (A and C matrices]
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Definitions

* The state of a dynamical system is the smallest set of variables such that
knowledge of these variables at t = t,,, together with the knowledge of the
input for t > t, completely determines the behavior for any time t > t,,.

* The state of an LTl dynamical system at time t is independent of the state
and input before t, [initially at rest).

* Variables that do not represent physical quantities can be chosen as state
variables

* How do we know the minimum number of states?
* The minimum number required states equals to the order of the
differential equations describing the system
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Example 1 [Non-linear System)

2

aw+ sinz = u, v(ty) = vg, w(ty) = wy
V+C0SZ = U : _ _
[ 2 w (to) = qa Z(to) =<0
I+ = at
State Variables State Equations
. . 2 2
Xy =V X1 =V = (uy—cosz) = [uy,—cos(—x,+ot)]

X2::W,X3::W xzzy{):_x3

: g 1, 2 .
Xy =W = ;[u]—sm(—x4+ocr)]

X4 = I = _X4+af
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Example 2

F(r)

my

—kx—f(X-y)+F
f(xX=7)
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Example 3: Spring Pendulum

A pendulum made of a spring with a mass m on the end

The equilibrium length of the spring is [
Assume that the motion takes place in a vertical plane
Find equations of motion for generalized coordinates x and 6

1 .
T = Em(a’cz + (I + x)%6?)

m

1
V=-mg(l+x)cosf + Ekx2

L=T-V =%m(3’c2 + (I +x)?02) + mg(l + x) cos 0 —%kx2
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Example 3: Spring Pendulum

L=T-V =%m(9’cz + (I +x)26%) + mg(l + x) cos 0 —%kx2

* Note that there are two generalized coordinates, x and 6.

d (0L\ 0L

—( ) —Pp mi=m(l+x)0%+mgcosf —kx (1)
dt \0x dx

d (0L\ OL d .

S ey _ Y a 25Y _ |

dt (ag’) 00 > dt (m( + x)?6) mg(l + x)sin6

m(l + x)?0 + 2m(l + x)x6 = —mg(l + x) sin @

m(l + x)0 + 2mx6 = —mg sin 6 (2)
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Example 4

“JC

* Inputs: voltages

X1 L @ <
o |
o
R
> (1) (2) <>lu2
l
u, and u,

* X4 :current flowing through inductor
* Xo:Vvoltage on the capacitor
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State-space modeling with input derivatives

y+ a1y+ azy — bou‘l‘ blu + bzu

Define:
x1 =y — Bou
Xy = %1 — iUl where
y =Xx1 + Bou
X = —QyX1 — a1Xxy + fou

.9.C1 = X +,81u

Y = X1+ Bou

Bo = bg
p1 = by —aq By
where p2 =by —aq By — az Py
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Input: displacement x,
Output: displacement x;

mi, = —kx; = f1x;—ky(x; —x,)

= —foXy + ky(x{ = X,)

J

mx; = — kX = f1% —f4
fl . fZ .
+—y +— =——U

y m my m
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Linearization of Nonlinear Systems

* Linear Approximation
* Approximation of individual nonlinear terms
* Jacobian Linearization
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Tangent Line Approximation and Taylor's Theorem

* For small deviatdxs  around a fixed point x

f:«') original Taylor Series

F(X+8x) = f(x)+df6x+ 1d> L (5x)2 +
dx 2 x

JE+8X) e tangent line _ _
Approximation

fX)+8f |- df
J(x+0x) = f(X) + == (X)0x
F G e "

= e ——_—

- 5f = 3—];(56)5)(
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Small Angle Approximation

* Approximate the values of main trigonometric functions
* The angle is small and measured in radians

sinf = 0 tanf = 6

cosf = 1 sin’0 =~ 0

d
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Small Angle Approximation

* Approximate the values of main trigonometric functions

* The angle is small and measured in radians
sinf = 6 tanf = 0

cosf = 1 sin’0 =~ 0

Taylor series expansion about O

. D" an 6> 6
= L 7076 a0

n
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Small Angle Approximation

* Approximate the values of main trigonometric functions
* The angle is small and measured in radians

A Comparison of x, sin(x) and tan(x) A Comparison of cos(x) and 1 - x**2/2

Function Value

1.2 T T T T 1.2 T T T T
X cos(x)
ks 1-x92/2
n [
e } -] -
08 P - 08 — |
~ //’ g \\‘\
06 - " . S 06 [ A
A ] \\\
= E _
0.4 =7 - 0.4 - -
0.2 | - 02 | _
0 L | | | 0 ! | | !
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Angle in Radians

Angle in Radians

23



Equilibrium Point

x(t) = flx(@), u(r)]
y(t) = glx(?), u(t)]

* Atthe equilibrium point (iz, X, y),the 0 = f[X,
derivatives will go to zero.
y = glx,
Taylor Series Approximation
i= fral+ 2 -n+% w-n
ox|_ oul_ _
U, X U, X
y=glrm+%| -n+E| w-n)
ox|_ oul_ .
u, X u, X

x(0) = x,
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Approximation in Matrix Form

* |ntroduce variables for small variations:

ox(?) := x(t)—x ou(t) :=u(t)y—u Oy(t) := y(t) -y

« Notethat QX = X

¢ = 9L x| su 8y =98 &x+ 98] ou
axﬁx auﬁx *lg, x auﬁx
Linearized Version of State Model
0x = Adx+ Bou A :a_f c :a_g
0x - 0x
oy = Cox+ Dou ’
ox(0) = x5 — X a”ax Buﬁ

bell

ball




Jacobian Linearization

>
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Example 1

X =-2x+05x+1)u

Linearize the system around the constant inputat 7 = 2

* Equilibrium Point

0 =-2x+05(x+1u

Ny
|
(\S)
=I
[l
—_

e Jacobian Linearization

fx,u)=-2x+05xu +0,5u
_9d(=2x+0,5xu+0,5u)

A = -2+4+0,5u2 = -1
0Xx _
u, X
u —
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Example 1

Linearized Version of State Model
O0xX = AOx+ Bou
OX = —OXx + Ou
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Example 2

dx1(t) —_— * Equilibrium Point
dt
x1=0, x=0
dx;t(t) _ K - $ sinx (1)

* Small angle approximation (Taylor Series for x,=0]
sinf = sin0+ cos0(6 —0) — -
03 6°

' =0 — sinf = 0
sinf =6 6+120+




Example 2

dxq(t  Equilibrium Point
-
dxa(t)  k g . x1=0, x=0
e —x7(t) zsmxl(t)
e Jacobian Linearization
afl(xlle) afl(xlle) i O 1
A=|opliie)  opin J = | g k}
X1,X X1,X _ & —_K
Zaxll 2 Zaxlz 2 i i COS xl —




Example 3

y= M_|_1. 29<%—|—92€Sin9—gsin9cosf)>
m Sm

0= — 1. 5 —Ec059—9’2£c0595in9+M+mgsin9
0(5; +sin”6) m m

+ EquilbriumPoint  § =0,0 =0, =0

« Small angle approximation sin@~60 cosf =1
— "op + ! u
ST TME T M
M+ m 1
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Example 4

b Gin = a8
- qin
\/
’3\/_\
. K, . ~A
= " (Ku—K
]8 Rm ( att m@) h
dh | q
SE = af — k\/ﬁ v 5 e B
Qout = k\/ﬁ

= 1
Linearization: Vh = \/ﬁ +——=0h
2\ h
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Example 5: Spring Pendulum

X1 = X3

. ) k

Xy = (I + x1)x4° + gcosxs — —xq
m

X3 = X4

2X,Xs4 g SiNn X3

Xg = —
* [+x; 14+ x
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